Supplementary Materials

Supplementary Material, Figure 1

Correlation analysis generated in Rosetta Resolver software. For each vehicle vs E_2 data were plotted against vehicle vs xenoestrogen. Correlation coefficients of common signature genes were compared to give an indication of how similar the responses were.

Supplementary Material, Figure 2

Comparison of uterine gene response profiles after 2 hours (A) or 24 hours (B). Hierarchical clusters were built in Rosetta Resolver using cutoffs of p<0.001 and at least 2 fold change in expression of WT or KIKO E₂ BPA or HPTE treatment. Each horizontal row represents comparison of vehicle to an estrogenic substance (E₂, BPA or HPTE) for the indicated ERα genotype (WT, KIKO or αERKO). Genes increased relative to vehicle treated are red; decreased are green.

Supplementary Material, Figure 3

Correlation analysis generated in Rosetta Resolver software. For each KIKO vehicle vs E_2 data were plotted against KIKO vehicle vs xenoestrogen. Correlation coefficients of common signature genes were compared to give an indication of how similar the responses were.

Supplementary Material, Figure 4

Correlation analysis generated in Rosetta Resolver software. KIKO vehicle vs E_2 data were plotted against WT vehicle vs E_2 . Correlation coefficients of common signature genes were compared to give an indication of how similar the responses were.

Supplementary Material, Figure 5

RT-PCR analysis of WT and Ex3 α ERKO samples for transcripts that have residual responses in the α ERKO. Note that unlike the results in Figure 3A in this experiment, the xenoestrogen responses in the WT were as robust as E₂. Results were analyzed by 2 way ANOVA with a post t test relative to V. **: P<0.01

Supplementary Material, Figure 6

Analysis of potential xenoestrogen selective transcripts

RT-PCR and microarray values of 5 potential xenoestrogen selective transcripts. *Axin1*, period homolog 1 (Drosophila) (Per1), tenascin XB (Tnxb), guanine nucleotide binding protein, alpha 12 (Gna12), and major vault protein (Mvp). Results were analyzed by 2 way ANOVA relative to V with a post t test. * P<0.05

Supplemental Material, Figure 1

В.

Supplemental Material, Figure 2

Supplemental Material, Figure 3

WT vs KIKO E₂ 2h

WT vs KIKO E₂ 24h

Supplemental Material, Figure 5

	E ₂ , 2h	BPA, 2h	HPTE, 2h
Axin1	1.14649	2.48124	2.15126
Per1	1.12269	3.98242	2.7471
Tnxb	-1.06701	2.4531	2.24406
Gna12	-1.1475	2.0695	1.91834
Mvp	-1.35848	2.88604	2.43668

Microarray Values (fold change vs V)

£221

BPA.ZII

Supplemental Material, Figure